54 research outputs found

    Aminopyrazine Inhibitors Binding to an Unusual Inactive Conformation of the Mitotic Kinase Nek2: SAR and Structural Characterization†

    Get PDF
    We report herein the first systematic exploration of inhibitors of the mitotic kinase Nek2. Starting from HTS hit aminopyrazine 2, compounds with improved activity were identified using structure-based design. Our structural biology investigations reveal two notable observations. First, 2 and related compounds bind to an unusual, inactive conformation of the kinase which to the best of our knowledge has not been reported for other types of kinase inhibitors. Second, a phenylalanine residue at the center of the ATP pocket strongly affects the ability of the inhibitor to bind to the protein. The implications of these observations are discussed, and the work described here defines key features for potent and selective Nek2 inhibition, which will aid the identification of more advanced inhibitors of Nek2

    Finding the needle in the haystack: why high-throughput screening is good for your health

    Get PDF
    High-throughput screening is an essential component of the toolbox of modern technologies that improve speed and efficiency in contemporary cancer drug development. This is particularly important as we seek to exploit, for maximum therapeutic benefit, the large number of new molecular targets emerging from the Human Genome Project and cancer genomics. Screening of diverse collections of low molecular weight compounds plays a key role in providing chemical starting points for iterative optimisation by medicinal chemistry. Examples of successful drug discovery programmes based on high-throughput screening are described, and these offer potential in the treatment of breast cancer and other malignancies

    Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling.

    Get PDF
    Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes

    Structure-Guided Evolution of Potent and Selective CHK1 Inhibitors through Scaffold Morphing

    Get PDF
    Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice

    Mechanism-Based Screen for G1/S Checkpoint Activators Identifies a Selective Activator of EIF2AK3/PERK Signalling

    Get PDF
    Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes

    Multiparameter Lead Optimization to Give an Oral Checkpoint Kinase 1 (CHK1) Inhibitor Clinical Candidate: (R)-5-((4-((Morpholin-2-ylmethyl)amino)-5-(trifluoromethyl)pyridin-2-yl)amino)pyrazine-2-carbonitrile (CCT245737)

    Get PDF
    Multiparameter optimization of a series of 5-((4-aminopyridin-2-yl)amino)pyrazine-2-carbonitriles resulted in the identification of a potent and selective oral CHK1 preclinical development candidate with in vivo efficacy as a potentiator of deoxyribonucleic acid (DNA) damaging chemotherapy and as a single agent. Cellular mechanism of action assays were used to give an integrated assessment of compound selectivity during optimization resulting in a highly CHK1 selective adenosine triphosphate (ATP) competitive inhibitor. A single substituent vector directed away from the CHK1 kinase active site was unexpectedly found to drive the selective cellular efficacy of the compounds. Both CHK1 potency and off-target human ether-a-go-go-related gene (hERG) ion channel inhibition were dependent on lipophilicity and basicity in this series. Optimization of CHK1 cellular potency and in vivo pharmacokinetic–pharmacodynamic (PK–PD) properties gave a compound with low predicted doses and exposures in humans which mitigated the residual weak in vitro hERG inhibition

    Epigenetic assays for chemical biology and drug discovery

    Full text link

    High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity

    No full text
    The molecular chaperone heat-shock protein 90 (HSP90) plays a key role in the cell by stabilizing a number of client proteins, many of which are oncogenic. The intrinsic ATPase activity of HSP90 is essential to this activity. HSP90 is a new cancer drug target as inhibition results in simultaneous disruption of several key signaling pathways, leading to a combinatorial approach to the treatment of malignancy. Inhibitors of HSP90 ATPase activity including the benzoquinone ansamycins, geldanamycin and 17-allylamino-17-demethoxygeldanamycin, and radicicol have been described. A high-throughput screen has been developed to identify small-molecule inhibitors that could be developed as therapeutic agents with improved pharmacological properties. A colorimetric assay for inorganic phosphate, based on the formation of a phosphomolybdate complex and subsequent reaction with malachite green, was used to measure the ATPase activity of yeast HSP90. The Km for ATP determined in the assay was 510+/-70 microM. The known HSP90 inhibitors geldanamycin and radicicol gave IC(50) values of 4.8 and 0.9 microM respectively, which compare with values found using the conventional coupled-enzyme assay. The assay was robust and reproducible (2-8% CV) and used to screen a compound collection of approximately 56,000 compounds in 384-well format with Z' factors between 0.6 and 0.8
    corecore